_		Subject Code:- Roll. No:	Subject Code:- AEC0613				
		Kon. No.				7	
NOIDA INSTITUTI	E OF ENGINEERING	AND TECHNO	LOGY, G	REATE	NOIDA		
	Autonomous Institute A	ffiliated to AKT	•				
B.Tech							
SE	CM: VI - THEORY EXA Subject: ANN &	•		4)			
Time: 3 Hours	Subject. Aiviv c	t Deep Learning	5	Max.	Marks: 10)0	
General Instructions:				2120020			
IMP: Verify that you ha	-					•	
1. This Question paper c		ns -A, B, & C. It	consists o	of Multiple	Choice		
Questions (MCQ's) & St	·	ad an right hand	l side of a	ah ayaati	0.14		
 Maximum marks for e Illustrate your answer 	•	-	i siae oj et	ich quesii	m.		
4. Assume suitable data		rever necessary.					
5. Preferably, write the d	•	der.					
6. No sheet should be lef	ft blank. Any written mat	erial after a blan	k sheet wi	ll not be			
evaluated/checked.							
CE CETON A						•	
SECTION-A					2	20	
1. Attempt all parts:-			> X				
-	aron specification to solv	e the AND probl	em require	es a minin	ıum	1	
of- (CO1)		100)				
(a) Single Neu							
(b) Two Neuro							
(c) Three neur							
(d) Four Neuro						4	
_	vised learning? (CO1)			_		1	
	ustment based on deviati		put from a	ctual outp	ut		
	ustment based on desired	•					
	ustment based on actual	output only					
· /	e mentioned						
	vantage of using Momer		ient Desce	nt? (CO2)	•	1	
_	es faster than Gradient De	escent					
(b) It avoids or	_						
•	one to local minima						
(d) It guarantee	es global minimum						
1-d. What is Princi	pal Component Analysis	(PCA)? (CO2))			1	
(a) A type of re	egression analysis						
(b) A techniqu	e used to reduce the dim	ensions of a data	set				

	(c)	A method to calculate the standard deviation of a dataset	
	(d)	A type of clustering algorithm	
1-e.	W	That is the Bias-Variance tradeoff in machine learning? (CO3)	1
	(a)	The tradeoff between model complexity and training time	
	(b)	The tradeoff between underfitting and overfitting	
	(c)	The tradeoff between training set error and test set error	
	(d)	The tradeoff between accuracy and interpretability	
1-f.	W	That is the effect of L2 regularization? (CO3)	1
	(a)	A technique for reducing bias in machine learning models	
	(b)	A technique for reducing variance in machine learning models	
	(c)	A technique for reducing overfitting in machine learning models	
	(d)	A technique for reducing underfitting in machine learning models	
1-g.	T	he first layer is called the (CO4)	1
	(a)	Input layer	
	(b)	outer layer	
	(c)	hidden layer	
	(d)	none of the above	
1-h.	R	NNs stands for-(CO4)	1
	(a)	Recurrent neural network	
	(b)	recall network report NN None of the above	
	(c)	report NN	
	(d)	None of the above	
1-i.	V	That does LSTM stand for? (CO5)	1
	(a)	Long Short-Term Memory	
	(b)	Linear Short-Term Memory	
	(c)	Large-Scale Temporal Memory	
	(d)	Low-Level Sequential Memory	
1-j.	V	Thich of the following is NOT a key component of an LSTM network? (CO5)	1
	(a)	Forget gate	
	(b)	Input gate	
	(c)	Memory gate	
	(d)	Output gate	
2. Att	empt a	all parts:-	
2.a.	G	ive some real-world applications of ANN. (CO1)	2
2.b.	D	refine learning rate in Gradient Descent. (CO2)	2
2.c.	E	laborate variance with suitable diagram. (CO3)	2
2.d.	L	ist down the hyperparameters of a Pooling Layer. (CO4)	2

2.e.	How is a GRU different from a traditional recurrent neural network (RNN)? (CO5)	2
SECTI	ON-B	30
3. Answ	ver any <u>five</u> of the following:-	
3-a.	Discuss Reinforcement learning in detail. (CO1)	6
3-b.	Implement AND function using ANN? (CO1)	6
3-c.	Explain the principal component analysis. (CO2)	6
3-d.	Write the short note on gradient descent. (CO2)	6
3.e.	Elaborate the role of Softmax in deep learning. (CO3)	6
3.f.	An input image has been converted into a matrix of size 12 X 12 along with a filter of size 3 X 3 with a Stride of 1. Determine the size of the convoluted matrix. (CO4)	6
3.g.	Write the short note on turncatted backpropagation through time (BPTT). (CO5)	6
SECTI	ON-C	50
4. Ansv	ver any <u>one</u> of the following:-	
4-a.	Compute the N/W output for $x1=0.2$, $x2=0.4$, and bias $b=1$ with weight 0.2 for binary activation function. Assume $w1=w2=1$. (CO1)	10
4-b.	Write short note on latest trends in AI technology. (CO1)	10
5. Ansv	ver any one of the following:-	
5-a.	Describe gradient descent with figure and also write its advantage and disadvantage. (CO2)	10
5-b.	Write the short note on autoencoder, denoising autoencoder and sparse autoencoder. (CO2)	10
6. Ansv	ver any one of the following:-	
6-a.	Write short note on the following: (i) ReLU activation function, (ii) sigmoid function, (iii) tanh (iv) linear activation function (v) Leaky ReLU activation function. (CO3)	10
6-b.	Write short note on the following: (i) Preprocessing of data set, (ii) vector representation of words (CO3)	10
7. Answ	ver any one of the following:-	
7-a.	Discuss the working of the DenseNet with suitable architecture. (CO4)	10
7-b.	Discuss the working of the VGGNet with suitable architecture. (CO4)	10
8. Ansv	ver any one of the following:-	
8-a.	Describe in detail all the gates used in GRU. (CO5)	10
8-b.	Draw and explain the architecture of recurrent neural network (RNN) network. (CO5)	10